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1. Introduction

It has been known that the type IIB string theory admits three maximally supersymmetric

backgrounds: flat Minkowski space, AdS5 × S5 and gravitational plane wave. The last

one was recently known with the discovery [1] that the type IIB supergravity solution

of a gravitational plane wave with a constant, null five-form field strength constitutes a

maximally supersymmetric background:

ds2 = −2dx+dx− − µ2x2
I(dx+)2 + dxI

2, (1.1)

F+1234 = F+5678 = 2µ.

The plane wave geometry (1.1) is obtained by taking the Penrose limit of the AdS5 × S5

geometry.

The AdS5 ×S5 geometry got a prominent position due to the AdS/CFT duality [2 – 4]

asserting that the type IIB superstring moving in the AdS5 × S5 background is dual to
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the four dimensional N = 4 super Yang-Mills theory. Though a remarkable success of this

conjecture, a general proof is still out of reach since the string theory in this background

is given by a highly nonlinear two dimensional field theory [5] and the duality relates the

weak coupling regime of one theory to the strong coupling regime of the other theory. Since

the plane wave geometry (1.1) is obtained through a limit of the AdS5 ×S5 geometry, this

limit is particularly interesting by virtue of the AdS/CFT duality. It was realized in [6]

that the type IIB string theory in the plane wave background (1.1) has a very simple

description in terms of the dual supersymmetric Yang-Mills theory in a particular double

scaling limit. Remarkably the duality turns out be perturbatively accessible from both

sides of the correspondence, which so truly goes to a regime of interacting string theory.

For reviews on this subject, see, for example, [7].

This kind of concrete realization of the duality is mainly due to the fact that the string

theory in the Ramond-Ramond background (1.1) is exactly solvable [8, 9]. The plane

wave superstring reduces to a free, massive two dimensional model once one goes to the

light-cone gauge. It is therefore as straightforwardly quantized as the superstring in a flat

spacetime background. It may thus be possible to get the complete spectrum of the plane

wave superstring including D-branes too.

Since D-branes play a very crucial role in the understanding of string dualities,

AdS/CFT duality, microscopic description of some black-hole entropy, phenomenological

model building, etc. [10, 11], it is important to have a complete classification of D-branes.

In a flat spacetime, the D-branes appear as the half BPS solitons of the type II string

theories, preserving 16 supersymmetries and their transverse positions can be arbitrary so

that they are usually the moduli of the BPS solitons. D-branes can also be described by

the boundary states of closed strings [12, 13]. The symmetries that the boundary state

preserves are thus generically the combination of the closed string symmetries that leave

the boundary state invariant. In this scheme, a D-brane acts as a source of closed strings

and such properties are guaranteed by the conformal symmetry of the worldsheet.

Though the properties of D-branes have been extensively studied over a decade, it is

still a challenging problem to completely classify the D-branes in a general string back-

ground. Since the string propagation on the curved background (1.1) can be solved exactly

by choosing light-cone gauge in the Green-Schwarz action [8, 9], we may have a systematic

classification of D-branes in the type IIB plane wave background. Two of us with Cha

showed in [14] that it is actually possible at least for longitudinal branes, i.e., extended

along the light-cone directions. In this paper we will extend the previous work [14] to less

supersymmetric configurations by introducing magnetic as well as electric fluxes, or con-

stantly boosting D-branes. We will find a very rich spectrum of supersymmetric D-branes in

the type IIB plane wave background. D-branes in the Ramond-Ramond background (1.1)

have been studied in a number of papers [14]–[40] from different points of view. Branes in

other plane wave backgrounds have also been studied [41]–[47].

This paper is organized as follows. In section 2 we review the D-brane classification

in [14]. In section 3 we start with eq. (3.7) derived in [14], which is the most general

worldsheet supercurrent for the open string dynamical supersymmetry applicable to D-

branes with an electric flux F+I and an angular momentum LIJ , i.e., boosted D-branes.
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We find all possible configurations preserving some fraction of dynamical supersymmetries

for the D±-branes [16]–[23] and the oblique D-branes (OD-branes) [24 – 26, 14]. We will

not only reproduce the known solutions but also find many new supersymmetric D-branes.

In section 4 we consider D-branes in a magnetic flux background FIJ , which was recently

analyzed by Mattik [15] for maximally supersymmetric D-branes. We derive the most

general worldsheet supercurrent (4.14) with the magnetic flux FIJ . We find several su-

persymmetric D-branes, of course, with reproducing the maximally supersymmetric cases

found by Mattik [15]. In section 5 we study D-branes in the most general background,

say, with F+I , LIJ as well as FIJ . We find there still exist some supersymmetric D-branes

even in this case. In section 6 we briefly review our results obtained and discuss some

related issues. Finally, in appendix A we list useful matrix relations which are used to find

supersymmetric backgrounds for the oblique D-branes.

2. D-branes in a plane wave background

The Green-Schwarz light-cone action in the plane wave background (1.1) describes eight

free massive bosons and fermions [8, 9]. In the light-cone gauge, X+ = τ , the action is

given by

S =
1

2πα′p+

∫
dτ

∫ 2πα′|p+|

0
dσ

[
1

2
∂+XI∂−XI −

1

2
µ2X2

I − iS̄(ρA∂A − µΠ)S

]
(2.1)

where ∂± = ∂τ ±∂σ. The equations of motion following from the action (2.1) take the form

∂+∂−XI + µ2XI = 0, (2.2)

∂+S1 − µΠS2 = 0, ∂−S2 + µΠS1 = 0. (2.3)

The closed string action (2.1) has the global symmetry SO(4) × SO(4)′ × Z2 which is

the isometry in the plane wave background (1.1). The Z2 symmetry here interchanges

simultaneously the two SO(4) directions [48]1

Z2 : (x1, x2, x3, x4) ↔ (x5, x6, x7, x8). (2.4)

In this paper we want to study supersymmetric D-branes in the plane wave background

(1.1). One of doing this is, according to Polchinski [10, 11], to consider an open string at-

tached on a Dp-brane. The open string theory is then defined by the action (2.1) with

appropriate boundary conditions imposed on each end of the open string. So our interest

is to find what boundary condition has to be imposed to preserve (dynamical) supersym-

metries in the open string theory on the Dp-brane. Following the recipe in [14], we will

present an efficient worldsheet formalism for the supersymmetric boundary conditions on

the most general ground.

1 This Z2 symmetry explains why the oblique D-brane, which is at 45o angle in the two SO(4) directions,

can exist in the plane wave background (1.1) and the spectrum of D-branes is symmetric under the Z2

involution (2.4).
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Since the boundary condition of fermionic coordinates is insensitive to the details of

bosonic boundary conditions, we assume the following boundary condition at each end of

the open string [49] without loss of generality:

(S1 − ΩS2)|∂Σ = 0, (2.5)

where Ω is a fermionic gluing matrix whose explicit form will be specified.

For D-branes with the flux F+I and the angular momentum LIJ only, the gluing

matrix Ω is exactly the same as the trivial backgrounds and is simply given by the product

of γ-matrices along the Neumann directions:2

Ω =
∏

r∈N

γr. (2.6)

So, in this case,

Ω2 = ±1, (2.7)

γrΩ = −Ωγr, ∀r ∈ N, (2.8)

γr′Ω = Ωγr′ , ∀r′ ∈ D. (2.9)

For D-branes with the flux Frs, however, Ω has the following form [13, 15]:

Ω = Ω̃ exp
1

4
Θrsγrs

, (2.10)

where Ω̃ is the gluing matrix of the type (2.6) for the Neumann directions without flux and

the parameters Θrs depend on the flux Frs. In this case, the nice properties, eqs. (2.7) and

(2.8), no longer hold due to the additional exponential factor. However the property (2.9)

is still true since the flux Frs extends only along the Neumann directions. If Θrs 6= 0, e.g.,

with rank 2, the gluing matrix Ω continuously interpolates among codimension 2 D-branes.

When Θrs → 0 or π, we have to recover the case (2.6) [15].

As was shown in [14], the possible type of the D-branes with the gluing matrix Ω in

eq. (2.6) can be characterized by the matrix Γ defined by

Γ ≡ ΠΩΠΩ. (2.11)

It is easy to show that the matrix Γ satisfies the following relations:

ΠΩΠΩ = Γ = ΠΩT ΠΩT , (2.12)

ΓΓT = 1, ΠΓΠΓ = 1. (2.13)

The matrix Γ is either a symmetric or an antisymmetric matrix. In the case the matrix

Γ is symmetric, i.e. ΓT = Γ, it follows from (2.12) and (2.13) that

Γ2 = 1, [Π,Γ] = 0 = [Ω,Γ]. (2.14)

2In this paper we will use the notation and the convention in [14]. Neumann (N) coordinates Xr

are decomposed into oblique directions X r̂ and usual parallel directions X ṙ : r = (r̂, ṙ). Similarly,

Dirichlet (D) coordinates Xr′

are also decomposed into oblique directions X r̂′

and usual parallel directions

X ṙ′

: r′ = (r̂′, ṙ′).
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D-brane type Γ Ω

D± ±1 ΩD±

OD3 ±γ1256 1
2(γ1−γ6)(γ2±γ5)

1
2(γ1−γ6)(γ2∓γ5)γ34

OD5 ±γ1256 1
2(γ1−γ6)(γ2∓γ5)γ78

1
2(γ1−γ6)(γ2±γ5)γ37

OD7 ±γ1256 1
2 (γ1−γ6)(γ2±γ5)γ3478

OD±5 ±γ 1
4 (γ1−γ6)(γ2±γ5)(γ3−γ8)(γ4+γ7)

Table 1: D-branes with Γ2 = 1

On the other hand, in the case the matrix Γ is antisymmetric, i.e. ΓT = −Γ,

Γ2 = −1, {Π,Γ} = 0 = {Ω,Γ}. (2.15)

It was shown in [14] that the D-branes satisfying Γ2 = −1 preserve no supersymmetry.

This fact is not affected by introducing nontrivial backgrounds since the gluing matrix Ω

is still the same as before and the matrix Γ then has imaginary eigenvalues. Thus we will

consider only the D-branes satisfying Γ2 = 1. Table 1 shows the possible D-branes with

particular polarizations. Other D-branes with different polarizations can be obtained by

the SO(4) × SO(4)′ rotations.

D±-branes [16]–[23] are a specific class satisfying Γ = ±1, which are denoted as

(+,−,m, n) with m,n = 0, 1, . . . , 4 following the convention in [18]. D−-branes are of

the type |m−n| = 2 while D+-branes are of the type |m−n| = 0, 4. The oblique D-branes

with Γ2 = 1 can be summarized as follows:

ODp-brane : Γ = ±γi1i2i′
3
i′
4 , (p = 3, 5, 7), (2.16)

OD5-brane : Γ = ±γ, (2.17)

where γ = γ12...8 is the SO(8) chirality matrix. Eq. (2.14) requires that Γ should contain

an even number of gamma matrices in both {γi, i = 1, . . . , 4} and {γi′ , i′ = 5, . . . , 8}.

3. Supersymmetric D-branes with F+I and LIJ

In a light-cone gauge, the 32 components of the supersymmetries for a closed string decom-

pose into kinematical supercharges, Q+A
a , and dynamical supercharges, Q−A

ȧ . For a closed

superstring in the plane wave background with the action (2.1), the conserved super-Nöther

charges were identified by Metsaev [8]:

Q+1 =

√
2p+

2πα′p+

∫ 2πα′|p+|

0
dσ(cos µτS1 − sin µτΠS2), (3.1)

Q+2 =

√
2p+

2πα′p+

∫ 2πα′|p+|

0
dσ(cos µτS2 + sin µτΠS1), (3.2)
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√
2p+Q−1 =

1

2πα′p+

∫ 2πα′|p+|

0
dσ

(
∂−XIγIS1 − µXIγIΠS2

)
, (3.3)

√
2p+Q−2 =

1

2πα′p+

∫ 2πα′|p+|

0
dσ

(
∂+XIγIS2 + µXIγIΠS1

)
. (3.4)

The kinematical supersymmetry is, in general, related to a shift of spinor fields and

thus generated by spinor zero modes. So the kinematical supersymmetry is insensitive to

the details of backgrounds, i.e., fluxes and boosting,3 and it has to be fixed by the boundary

condition (2.5). Since we are interested in the open string supersymmetry surviving non-

trivial backgrounds, we will focus only on the dynamical supersymmetry. The dynamical

supercharge preserved by an open string on a D-brane is given by a combination of closed

string supercharges Q−A compatible with the open string boundary conditions. Due to the

boundary condition (2.5), it turns out that the conserved dynamical supercharge is given

by (a subset of)

q− = Q−1 − ΩQ−2. (3.5)

In this section we will first show how D-branes can preserve dynamical supersymme-

tries by turning on the flux F+I or the angular momentum LIJ . It is easy to derive the

conservation law [14] for the dynamical supersymmetry in eq. (3.5) using the equations of

motion, eqs. (2.2) and (2.3):

∂q−τ
∂τ

+
∂q−σ
∂σ

= 0, (3.6)

where

q−σ =

√
1

2p+

(
(∂τXrγr − ∂σXr′γr′)(S1 − ΩS2)

+(∂τXr′γr′ − ∂σXrγr)(S1 + ΩS2)

+µXrγrΩΠ(S1 + ΓΩS2) − µXr′γr′ΩΠ(S1 − ΓΩS2)
)
. (3.7)

In the course of derivation, we used the relations, (2.8) and (2.9). However, we didn’t

assume anything about bosonic as well as fermionic boundary conditions.

In order for the supercharge q− to be conserved, the current q−σ in eq. (3.7) has to vanish

at the boundary of worldsheet, ∂Σ. Now we assume the fermionic boundary condition (2.5),

but it does not loose any generality since (the form of) the boundary condition (2.5) does

not depend on the details of backgrounds. Then we will find what boundary conditions for

bosonic coordinates XI have to be imposed to get the vanishing current at the boundary,

i.e., q−σ |∂Σ = 0. Since the details of the bosonic boundary condition, however, depend on

the type of D-brane, we will discuss D±-branes and OD-branes, separately.

3But the explicit form of the spinor zero modes themselves is sensitive to the type of D-brane and the

background gauge condensates [14, 15].
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3.1 D−-branes

First we consider the dynamical supersymmetry of D−-branes, where Γ = −1. In this case,

the current q−σ in eq. (3.7) at the boundary reduces to

q−σ |∂Σ =

√
2

p+

(
∂τXr′γr′ − ∂σXrγr − µXr′γr′ΩΠ

)
S1|∂Σ. (3.8)

We want to find what conditions are needed for bosonic coordinates XI in order for the

current (3.8) to vanish at the boundary. Of course, the trivial case is

∂τXr′ = ∂σXr = Xr′ = 0, ∀r′ ∈ D, ∀r ∈ N, (3.9)

and this configuration preserves maximal supersymmetry. But, as we will discuss, there

are many other configurations with the vanishing current which so preserve some amount

of supersymmetries.

It is useful to notice that the matrix ΩΠ for the D−-branes takes the following form:

ΩΠ = ±γI1I2 or ± γγI1I2, (3.10)

where

D−3-brane : (I1, I2) ∈ D, (3.11)

D−5-brane : I1 ∈ N, I2 ∈ D, (3.12)

D−7-brane : (I1, I2) ∈ N. (3.13)

3.1.1 ∂σXr 6= 0 case

If we consider the case Xr′ |∂Σ ≡ xr′

0 6= 0 for some r′ ∈ D, our problem is reduced to that

finding a matrix satisfying

γrr′ΩΠS1 = ±S1. (3.14)

A necessary condition is that (γrr′ΩΠ)2 = 1. Therefore the matrix γrr′ΩΠ has to take the

form

γrr′ΩΠ = ±γI1...In , n = 0, 4, 8. (3.15)

If a matrix exists satisfying eq. (3.14), the current at the boundary can vanish with the

following modified Neumann boundary condition:

∂σXr − µxr′

0 = 0. (3.16)

This kind of boundary condition can be easily achieved by introducing a boundary coupling

with the worldvolume gauge field A+ = −F+rX
r:

SB = − 1

2πα′p+

∫

∂Σ
dτAµ(X)

∂Xµ

∂τ
=

F+r

2πα′p+

∫

∂Σ
dτXr. (3.17)

When the spinor SA satisfies (3.14) together with the Neumann boundary condition (3.16),

the dynamical supersymmetries given by 1
2 (1 ± γrr′ΩΠ)q− are preserved.
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Going with eq. (3.10) into eq. (3.15), it is easy to see that the n = 0 and 8 cases

are possible only for D5-branes: (+,−, 3, 1) and (+,−, 1, 3) which preserve maximal su-

persymmetry as was shown in [18, 36, 14]. For example, let us take a (+,−, 3, 1)-brane

extended along (+,−, 1, 2, 3, 5) directions, say, N = (1, 2, 3, 5) and D = (4, 6, 7, 8) and thus

ΩΠ = −γ45. In this case we need the flux F+5 = µx4
0 only.

Using eq. (3.10), it is obvious that the n = 4 case is possible for all D−-branes. Four

dynamical supersymmetries are preserved in this case. We will not give any detail since

it should be really simple. Instead let us give you an example: Consider (+,−, 2, 0)-

brane where Ω = γ12 and ΩΠ = −γ34. If X5|∂Σ = x5
0 6= 0 and the spinor satisfies

(1 ± γ1345)S1 = 0 at the boundary, the half of dynamical supercharges are preserved with

the boundary condition ∂σX1 ∓ µx5
0 = 0.

We can get less supersymmetric configurations by considering more general back-

grounds. For example, let us consider two matrices M1 and M2 satisfying eq. (3.14). In

order for the spinor S1 to simultaneously satisfy the condition (3.14) for this background,

the product of M1 and M2, M3 = M1M2, should again be of the form (3.15). In a pedantic

notation,

M1S
1 = ±S1 and M2S

1 = ±S1 ⇒ M3 = M1M2 = ±γI1...In , n = 0, 4, 8. (3.18)

If M3 is of the form with n = 0, 8, the supersymmetry is not further broken. But, the

dynamical supersymmetry is further broken by half in the case of n = 4.

What is the least supersymmetric configuration which can be realized by turning on

constant fluxes F+I ? Since M3 = M1M2 should be of the form in eq. (3.18), we can see

from eqs. (3.11)–(3.13) that D3- and D7-branes can have only two independent projections

- 2 dynamical supersymmetries. This can be easily understood by noting that the D3 (D7)-

brane has only two Neumann (Dirichlet) directions. For the D5-brane discussed above, for

example, we can have M1 = γ1845, M2 = γ2745 and M3 = γ3645, but M1M2M3 = −γ, so

M1, M2 and M3 cannot be simultaneously independent in the space of positive chirality

spinors. Therefore the D5-brane also preserves at least 2 dynamical supersymmetries.

3.1.2 ∂τX
r′ 6= 0 case

If we consider the case Xs′ |∂Σ ≡ vs′ 6= 0 for some s′ ∈ D, we need a modified Dirichlet

boundary condition:

∂τX
r′ − µvs′ = 0. (3.19)

This kind of boundary condition can be achieved by boosting a D-brane with constant

velocity vs′ in a transverse direction. This means we are considering the following trans-

formation

Xr′ → Xr′ − µvs′τ (3.20)

where the light-cone gauge X+ = τ is used. With the boundary condition (3.19), the

supersymmetric condition is reduced to that finding a matrix satisfying

γr′s′ΩΠS1 = ±S1. (3.21)

– 8 –



J
H
E
P
0
1
(
2
0
0
6
)
0
1
5

Therefore the matrix γr′s′ΩΠ has to take the form

γr′s′ΩΠ = ±γI1...In , n = 0, 4, 8. (3.22)

Note that γr′s′ is a SO(2) spinor rotation in the transverse rotational symmetry SO(4 −
m) × SO(4 − n) for a (+,−,m, n)-brane.

Going with eq. (3.10) into eq. (3.22), it is easy to see that the n = 0 and 8 cases

are possible only for D3-branes: (+,−, 2, 0) and (+,−, 0, 2) which preserve maximal su-

persymmetry as was shown in [36]. This is the case that γr′s′ ∈ SO(2) in the transverse

rotation symmetry SO(4) × SO(2). However, the n = 4 case is possible for all D−-branes

in which case four dynamical supersymmetries are preserved. These branes are rotating in

the Xr′-Xs′ plane and correspond to the giant gravitons.

We can get less supersymmetric configurations by considering more boostings. What

is the least supersymmetric configuration which can be realized by boosting a D-brane ?

If we consider two boosts simultaneously, the product of M1 and M2, M3 = M1M2, should

be of the form in eq. (3.22) where the matrices M1 and M2 satisfy eq. (3.21). Then we

can see from eqs. (3.11)–(3.13) that D5- and D7-branes can have only one supersymmetric

rotation - 4 dynamical supersymmetries. This can be easily understood by noting that

the SO(3) (SO(2)) rotation for the D5 (D7)-brane is rank 1. For the D3-brane, however,

we can have two simultaneous rotations in the transverse SO(4) directions - 2 dynamical

supersymmetries since SO(4) is rank 2. The simultaneous SO(2) rotation of the D3-brane

does not further break supersymmetry as the reason discussed above.

3.1.3 general case

Now we consider general cases with ∂τX
r′ 6= 0 and ∂σXr 6= 0. In this case we have two

kinds of matrix from the conditions (3.14) and (3.21). One is of the form MF = γrr′ΩΠ

and the other is ML = γs′t′ΩΠ. To preserve the dynamical supersymmetry, the following

condition is further required:

MF ML = ±γrr′s′t′ . (3.23)

Thus we need at least three Dirichlet directions. Note that we can simply add the max-

imally supersymmetric configuration in the previous cases not affecting the resulting su-

persymmetry only if the condition (3.23) is satisfied. So we will discuss supersymmetric

configurations up to the maximally supersymmetric background in 3.1.1 and 3.1.2.

The condition (3.23) says that this case can preserve at most 4 dynamical supersymme-

tries. It also says that the D7-brane cannot preserve any dynamical supersymmetry in this

case. Noting that ML = γrr′s′t′ for the D5-brane, the background with one flux and one ro-

tation can preserve 2 dynamical supersymmtry as the least supersymmetric configuration.

For the D3-brane, first note that MF = γrr′s′t′ , ML = γr′s′t′u′

and so we can have only

two independent projections satisfying the condition (3.23). For example, for the D3-brane

discussed in 3.1.1, MF
1 = γ1345, MF

2 = γ2346 and ML
1 = γ3478. Since MF

1 MF
2 ML

1 = γ, the

dynamical supersymmetry is reduced only by 1/4.

– 9 –
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3.2 D+-branes

Next we consider the dynamical supersymmetry of D+-branes, where Γ = +1. In this case,

the current q−σ in eq. (3.7) at the boundary reduces to

q−σ |∂Σ =

√
2

p+

(
∂τX

r′γr′ − ∂σXrγr + µXrγrΩΠ
)
S1|∂Σ. (3.24)

A crucial difference from the D−-branes is that the term proportional to µ is now involved

with Neumann coordinates, which are in general nonvanishing and τ -dependent at the

boundary. So we can realize a supersymmetric configuration neither by turning on a

constant flux nor by boosting the D-brane unlike as D−-branes.

Nevertheless, as was found in [14], the dynamical supersymmetry can be preserved by

introducing a boundary coupling with the worldvolume gauge field:

SB = − 1

2πα′p+

∫

∂Σ
dτAµ(X)

∂Xµ

∂τ
= − 1

2πα′p+

∫

∂Σ
dτA+(X), (3.25)

where the flux F+I is not constant but linearly depends on the Neumann coordinates. That

is, the gauge field A+(X) is given by

A+(X) = ±µ

2

(
∑

r1∈N1

Xr1Xr1 −
∑

r2∈N2

Xr2Xr2

)
, (3.26)

where N1 denotes Neumann coordinates in the first SO(4) directions and N2 does those in

the second SO(4) directions. The Neumann boundary condition is then modified as follows

(
∂σXr1 ± µXr1

)
∂Σ

= 0 =
(
∂σXr2 ∓ µXr2

)
∂Σ

. (3.27)

The dynamical supersymmetry of D+-branes can be preserved basically due to the fact

that (ΩΠ)2 = 1 so that there are always solutions satisfying ΩΠS1 = ±S1. In particular,

the (+,−, 4, 0)- and (+,−, 0, 4)-brane preserve the maximal supersymmetry since ΩΠ = 1

and γ, respectively, for these branes [18, 21, 23]. One may ask whether or not less super-

symmetric configurations can be constructed. Looking into the structure of the current in

eq. (3.24), it seems to be impossible.

3.3 OD-branes

According to the gluing matrix Ω in table 1, we will define diagonal coordinates

X r̂ =
1√
2
(Xr ± Xr′), X r̂′ =

1√
2
(Xr′ ∓ Xr) (3.28)

with the index notation explained in footnote 2. For an OD5-brane described by Ω =
1
2 (γ1−γ6)(γ2−γ5)γ34, for example, we have

Neumann : X 1̂ =
1√
2
(X1 − X6), X 2̂ =

1√
2
(X2 − X5), X 3̇ = X3, X 4̇ = X4,

Dirichlet : X 5̂′ =
1√
2
(X5 + X2), X 6̂′ =

1√
2
(X6 + X1), X 7̇′ = X7, X 8̇′ = X8.

– 10 –



J
H
E
P
0
1
(
2
0
0
6
)
0
1
5

To discuss the supersymmetry of OD-branes, it is useful to decompose the spinors

SA(τ, σ) into the eigenspinors of Γ by defining

SA
±(τ, σ) = P±SA(τ, σ), (3.29)

where

P± =
1

2
(1 ± Γ). (3.30)

It follows from eq. (2.14) that the equations of motion, eq. (2.3), are completely separated

into two independent equations of motion for the spinors SA
±(τ, σ)

∂+S1
+ − µΠS2

+ = 0, ∂−S2
+ + µΠS1

+ = 0, (3.31)

∂+S1
− − µΠS2

− = 0, ∂−S2
− + µΠS1

− = 0 (3.32)

and the boundary condition, eq. (2.5), can be separately imposed for the spinors SA
±(τ, σ)

(S1
+ − ΩS2

+)|∂Σ = 0, (3.33)

(S1
− − ΩS2

−)|∂Σ = 0. (3.34)

It can be shown [14] that the spinor SA
+(τ, σ) then has a D+-like mode expansion while

SA
−(τ, σ) does a D−-like mode expansion since

ΓSA
±(τ, σ) = ±SA

±(τ, σ). (3.35)

Since the condition for q−σ |∂Σ in eq. (3.7) to vanish depends on the eigenvalue of the

matrix Γ as was reasoned above, we introduce projected supercharges defined by

q−± ≡ P±(Q−1 − ΩQ−2). (3.36)

It is easy to get the value of the current q−±σ at the boundary:

q−+σ

∣∣∣∣
∂Σ

=

√
2

p+

(
(∂τX ṙ′γ ṙ′ − ∂σX ṙγ ṙ + µX ṙγ ṙΩΠ)S1

+

+(∂τX
r̂′γ r̂′ − ∂σX r̂γ r̂ − µX r̂′γ r̂′ΩΠ)S1

−

)

∂Σ
(3.37)

and

q−−σ

∣∣∣∣
∂Σ

=

√
2

p+

(
(∂τX r̂′γ r̂′ − ∂σX r̂γ r̂ + µX r̂γ r̂ΩΠ)S1

+

+(∂τX ṙ′γ ṙ′ − ∂σX ṙγ ṙ − µX ṙ′γ ṙ′ΩΠ)S1
−

)
∂Σ

. (3.38)

Note that the dynamical supersymmetry, q−+ and q−−, cannot simultaneously be preserved

since each set of boundary conditions cannot simultaneously be compatible with each other.

So we will separately consider the supercharges q−±.

We see that the + component of the spinor S1 in eqs. (3.37)–(3.38) gives D+-like

supercharge, while the − component gives D−-like supercharge. As was shown in [14], the

D+-like supercharge can be preserved by turning on a boundary coupling with the gauge
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field A+(X) like eq. (3.26). One can easily understand the results by looking into the matrix

relations in appendix A. Especially, the OD3-brane preserves 4 dynamical supersymmetries

q−+ [24, 25] since X ṙ = 0 by definition while it can do only 2 dynamical supersymmetries

q−− by turning on a boundary coupling with the gauge field A+(X) of the type (3.26). The

OD5-branes with Ω = 1
2(γ1−γ6)(γ2 −γ5)γ34 and Ω = 1

2(γ1−γ6)(γ2−γ5)γ78 also preserve

q−± without any further projection since they satisfy eq. (A.3) and eq. (A.5), respectively.

We go over to the − component of the spinor S1 which gives D−-like supercharge. We

are now interested in the situation Xr′ 6= 0 for some r′ ∈ D. One has to remember that we

already introduced one or two projection operators to preserve the D+-like supercharge, so

that the introduction of nontrivial backgrounds for the D−-like supercharge may further

break the supersymmetry. It could be helpful to have an analogue of eq. (3.10) for the

OD-branes. In appendix A we list the useful matrix relations for those in table 1. The

matrix relations show a quite similar property to eq. (3.10) so that we can apply the same

strategy as the D−-branes. For this, we will often use the simple fact, for example,

(γI − γJ)(γI + γJ ) = 2γIJ . (3.39)

We will not repeat how to modify the boundary conditions for the OD-branes by turning

on a flux or boosting a D-brane since it is essentially the same as the D−-branes.

Let us first discuss the OD±5-branes since they are special compared to other OD-

branes. As was shown in [14], the OD+5-brane preserves no dynamical supersymmetry.

For the OD−5-brane, however, the current q−+σ at the boundary (q−− identically vanishes)

is given by

q−+σ

∣∣∣∣
∂Σ

=

√
2

p+
(∂τX r̂′γ r̂′ − ∂σX r̂γ r̂ − µX r̂′γ r̂′ΩΠ)S1|∂Σ. (3.40)

So the trivial boundary condition ∂τX
r̂′ = ∂σX r̂ = X r̂′ = 0 preserves the maximal super-

symmetry [24, 25]. Now our question is whether or not some dynamical supersymmetry

can be preserved by introducing a constant flux or a boosting. The answer is no since

Ω contains too many (4) oblique Neumann directions and so the vanishing condition in

eq. (3.40) can also be involved with the product of 2 or 6 gamma matrices. In the following

we will thus discuss the other OD-branes only.

3.3.1 ∂σXr 6= 0 case

In this case the problem is to find a matrix satisfying

q−+ : γ r̂r̂′ΩΠS1
− = ±S1

− (3.41)

or

q−− : γ ṙṙ′ΩΠS1
− = ±S1

−, (3.42)

where the OD3-brane can preserve q−− with trivial Dirichlet boundary condition X ṙ′ = 0

only since X ṙ = 0 by definition while the OD7-brane can preserve q−− with trivial Neumann

boundary condition ∂σX ṙ = 0 since X ṙ′ = 0. Otherwise we are implicitly assuming Xr′ 6= 0
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for the related Dirichlet coordinates. Of course, the supersymmetry q−± can be preserved

with the trivial boundary condition when Xr′ = 0, which is not the case of our interest.

For the gamma matrices in eq. (3.41), it is convenient to distinguish the following two cases

γ r̂′ = ±Πγ r̂Π, (3.43)

γ r̂′ 6= ±Πγ r̂Π, (3.44)

since their supersymmetry will be different in general.

From eqs. (A.4) and (A.6), we see that the corresponding OD5-branes preserve 4

dynamical supersymmetries q−+ for the case (3.43) while no supersymmetry for the case

(3.44). For example, the OD5-brane with Ω = 1
2 (γ1 − γ6)(γ2 − γ5)γ34 has the value

γ r̂r̂′ΩΠ = −γ1634γ1234 = γ26 for the case (3.44). The other OD-branes preserve 2 dynamical

supersymmetries q−+ for the case (3.43) since we meet again the same projection operators

as those in eqs. (A.1), (A.7) and (A.9). However the case (3.44) cannot preserve the

supersymmetry q−+ except the OD3-brane since the projection operators for the D−-like

supercharge are not compatible with those for the D+-like supercharge. For example, the

OD5-brane with Ω = 1
2(γ1 − γ6)(γ2 + γ5)γ37 has a value γ r̂r̂′ΩΠ = γ2537γ1234 = γ1457 for

the case (3.44) whose product with the matrices in eq. (A.7) becomes γ12 or γ56. The

OD3-brane did not yet use the matrices in eq. (A.1) for the D+-like supercharge, so it

preserves 2 dynamical supersymmetries q−+ even for the case (3.44). On the other hand,

we see that all the OD5-branes preserve 2 dynamical supersymmetries q−− since totally two

independent projections are needed.

3.3.2 ∂τX
r′ 6= 0 case

In this case we have a condition

q−+ : γ r̂′ŝ′ΩΠS1
− = ±S1

− (3.45)

or

q−− : γ ṙ′ṡ′ΩΠS1
− = ±S1

−, (3.46)

where the OD7-brane does not belong to the case (3.46) since X ṙ′ = 0 by definition.

Noting that γ r̂′ŝ′γ r̂ŝ = ±γ1256 for the table 1 and following the similar reasoning to

3.3.1, we immediately see that only the OD3-brane preserves 2 dynamical supersymmetries

q−+. Using the relations in appendix A, we also easily see that the OD3-brane preserves 2

dynamical supersymmetries q−− since no further projection is needed and the OD5-branes

also do 2 dynamical supersymmetries except the OD5-brane with Ω = 1
2(γ1−γ6)(γ2−γ5)γ37

which preserves no supersymmetry q−− unless X ṙ′ = 0.

3.3.3 general case

Finally we consider the general case with ∂τX
r′ 6= 0 and ∂σXr 6= 0. Since the conditions

(3.41) and (3.45) or (3.42) and (3.46) have to be simultaneously satisfied, we have an

additional condition as in 3.1.3 coming from the product

q−+ : γ r̂r̂′ΩΠγ ŝ′t̂′ΩΠ = γ r̂ŝt̂r̂′Γ, (3.47)

q−− : γ ṙṙ′ΩΠγ ṡ′ṫ′ΩΠ = ±γ ṙṙ′ṡ′ṫ′Γ, (3.48)
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where eq. (3.43) has been used in eq. (3.47). The OD±5-brane and the OD3-brane only can

satisfy eq. (3.47) and eq. (3.48), respectively. As was discussed in eq. (3.40), the OD±5-

brane cannot preserve the supersymmetry q−+ in this case. On the other hand, since the

term, ∂σX ṙ, for the OD3-brane is absent in eq. (3.38), the OD3-brane does not belong

to the present consideration but does to the previous case 3.3.2. Thus any dynamical

supersymmetry of OD-branes is not preserved under the general background.

4. Supersymmetric D-branes with FIJ

In this section we will study supersymmetric boundary conditions to preserve dynamical

supersymmetries after turning on the flux FIJ [15]. As we mentioned, the gluing matrix in

this case is given by eq. (2.10). We can also derive the conservation law for the dynamical

supersymmetry in eq. (3.5) with the gluing matrix Ω in eq. (2.10)

∂q−τ
∂τ

+
∂q−σ
∂σ

= 0. (4.1)

The current q−σ at the boundary is reduced to

q−σ |∂Σ =

√
2

p+

[
∂τX

r′γr′S1 − 1

2

(
∂σXr −

(1 − N

1 + N

)rs

∂τX
s
)
(δrt + N rt)γtS1

+
µ

2
Xrγs(N rs + δrsΓB)ΩΠS1 − µ

2
Xr′γr′(1 − ΓB)ΩΠS1

]
, (4.2)

where we defined

ΩγrΩT = −N rsγs, (4.3)

ΓB = ΠΩTΠΩT . (4.4)

In eq. (4.2), we already used the fermionic boundary condition (2.5) and the relation (2.9).

Note that N rs = δrs when FIJ = 0 and then we recover eq. (3.7).

Here we have taken a different recipe from Mattik’s [15]. Indeed we only assumed the

fermionic boundary condition (2.5), whose form is independent of the detail of backgrounds,

to get the result (4.2). The relations (2.9) and (4.3) are the direct consequences (Baker-

Campbell-Hausdorff formula) of the prescribed form of the gluing matrix Ω in eq. (2.10).

We will now find most general boundary conditions which give rise to the vanishing current

at the boundary, i.e., q−σ |∂Σ = 0.

It is convenient to divide the Neumann directions into two groups: r = (a, i) where

a, b, c denote the directions without magnetic flux and i, j, k denote those with magnetic

flux. We also introduce a sign flip operation π : X1,2,3,4 7→ −X1,2,3,4. In this notation,

eq. (4.3) can be solved as follows:

exp
1

4
Θjkγjk

γi exp− 1

4
Θjkγjk

= −N ijγj , (4.5)

Nab = δab. (4.6)

Also the matrix ΓB can be rewritten as follows

ΓB = Γ̃ exp− 1

4
π(Θjk)γjk

exp− 1

4
Θjkγjk

, (4.7)
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where Γ̃ = ΠΩ̃ΠΩ̃.

Using the above results, eq. (4.2) can be separably written into two parts:

q−σ |∂Σ =

√
2

p+

[(
∂τXr′γr′ − µ

2
Xr′γr′(1 − ΓB)ΩΠ − ∂σXaγa +

µ

2
Xaγa(1 + ΓB)ΩΠ

)
S1

−1

2

(
∂σXi + F ij∂τX

j
)
(δik + N ik)γkS1 +

µ

2
Xiγj(N ij + δijΓB)ΩΠS1

]
, (4.8)

where we defined

F ij = −
(1 − N

1 + N

)ij

. (4.9)

Looking into the terms in eq. (4.8), we see that the most pertinacious term is the last one,

which is related to the Neumann coordinates and cannot be cancelled with other terms due

to its peculiar form. So we have to demand [15] that

N ijγj + γiΓB = 0. (4.10)

The above equation can be satisfied if and only if

Γ̃ = ΠΩ̃ΠΩ̃ = 1, (4.11)

γi exp− 1

4
π(Θjk)γjk

= exp
1

4
Θjkγjk

γi, ∀i. (4.12)

The condition (4.12) is equivalent to

π(Θjk) = Θjk and rank(Θjk) = 2. (4.13)

We see that the coordinates Xi in the limit Θjk = 0 where N ij = −δij satisfy the

usual Dirichlet boundary condition ∂τXi = 0 while in the limit Θjk = π where N ij = δij

they satisfy the usual Neumann boundary condition ∂σXi = 0. The conditions (4.11)

and (4.13) thus say that we have to start from a D+-brane when Θjk = 0 and the mag-

netic flux should be extended along only two directions in X1,2,3,4 or X5,6,7,8 to have a

D-brane to preserve the dynamical supersymmetry. So the D-brane with magnetic flux

is continuously interpolating from a D+-brane to a D−-brane with, in general, different

amount of supersymmetries at the endpoints. We will see that the dynamical supersym-

metry can be preserved by the same amount as D+-branes only if the condition (4.10)

is satisfied. So the maximally supersymmetric cases are Ω̃ = 1, Π, γΠ which correspond

to (+,−, 0, 0), (+,−, 4, 0), (+,−, 0, 4) branes when Θjk = 0. These are exactly the cases

found by Mattik [15].

Under the condition (4.10), the current in eq. (4.8) is reduced to

q−σ |∂Σ =

√
2

p+

[
∂τX

r′γr′S1 − ∂σXaγaS1 + µXa cos
Θjk

2
γaΩ̃ΠS1

−µXr′ sin
Θjk

2
γr′γjkΩ̃ΠS1 − 1

2

(
∂σXi + F ij∂τX

j
)
(δik + N ik)γkS1

]
. (4.14)

Now it is easy to find bosonic boundary conditions to preserve the dynamical supersym-

metry. First of all, we have the following boundary conditions

∂τXr′ = 0 = xr′

0 , (4.15)

∂σXi + F ij∂τXj = 0. (4.16)
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For Ω̃ = 1, Xa = 0 by definition, so that the dynamical supersymmetry is maximally

preserved. For Ω̃ = Π and γΠ, Ω̃ΠS1 = S1 so that the supersymmetry is maximal if

∂σXa − µ cos

(
1

2
Θjk

)
Xa = 0. (4.17)

This is the same kind of the boundary condition for the (+,−, 4, 0), (+,−, 0, 4) branes.

For the other branes, the dynamical supersymmetry can also be preserved by consid-

ering the spinor satisfying Ω̃ΠS1 = ±S1 at the boundary, but this time only 4 dynamical

supersymmetries are preserved as was shown in [14] since the projection operator 1
2(1±Ω̃Π)

is now nontrivial. This case also requires the modified Neumann boundary condition like

eq. (3.27) with the replacement µ → µ cos(1
2Θjk). Note that the matrix Ω̃ corresponding

to the (+,−, 1, 1) and (+,−, 2, 2) branes only can satisfy the condition (4.10) since the

(+,−, 3, 3) and (+,−, 4, 4) branes cannot have additional Neumann directions satisfying

eq. (4.13). Note that the brane position can be arbitrary when Θjk = 0.

5. Supersymmetric D-branes in general background

Now we will relax the condition (4.15). First note that, as shown in the previous section,

the projected spinors defined by

SA
± ≡ 1

2
(1 ± Ω̃Π)SA (5.1)

can only preserve the dynamical supersymmetry in the magnetic flux background. So we

have to consider the spinor S1
± satisfying

γar′jkS1
± = ±S1

± (5.2)

or

γr′s′jkS1
± = ±S1

±, (5.3)

where the ± sign in the right-hand side is just an eigenvalue of the matrix γar′jk or γr′s′jk

(independent of that in eq. (5.1)) and we will not concern the sign.

For the case (5.2), we have to further introduce a constant electric flux generated by

the linear gauge field A+ = −F+aX
a in addition to the quadratic piece eq. (3.27), where

F+a = µxr′

0 sin
Θjk

2 . In this case the Neumann boundary condition is given by

∂σXa − µ cos
Θjk

2
Xa + µxr′

0 sin
Θjk

2
= 0. (5.4)

The D-brane with Ω̃ = 1 does not belong to the above case since Xa = 0 by definition.

However, we can introduce two independent fluxes for the D-branes with Ω̃ = Π and

γΠ - at least 2 dynamical supersymmetries. For example, γar′jk = γ1756 or γ2856 for

Ω = Πexp
1

2
Θ56γ56

. The other cases allow only one independent projection, so that they also

preserve 2 dynamical supersymmetries. For example, γar′jk = γ1237 or γ1248 = −γΩ̃Πγ1237

for Ω = γ3456 exp
1

2
Θ12γ12

.
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For the case (5.3), on the other hand, we need the modified Dirichlet boundary condi-

tion

∂τXr′ − µvs′ sin
Θjk

2
= 0, (5.5)

where vs′ ≡ Xs′ |∂Σ for some s′ ∈ D. This means that the D-brane is constantly boosted

along the r′-direction. When Θjk = 0, it satisfies the usual Dirichlet boundary condition,

consistent with 3.2. The D-brane with Ω̃ = 1 can have two independent boosts (or angular

momenta) while the D-branes with Ω̃ = Π and γΠ allow only one angular momentum, so

that they preserve at least 4 dynamical supersymmetries. The other branes can have only

one independent boost, so at least 2 dynamical supersymmetries are preserved.

In order to consider eq. (5.2) and eq. (5.3) simultaneously, we need at least three

Dirichlet directions and Xa 6= 0. This is satisfied only by the brane, for example, with Ω =

γ35 exp
1

2
Θ12γ12

. This brane can preserve 2 dynamical supersymmetries since γar′jk = γ1236

and γs′t′jk = γ1278 = −γΩ̃Πγ1236.

6. Discussion

We studied D-branes in the type IIB plane wave background together turning on additional

backgrounds — electric as well as magnetic fluxes and an angular momentum. We found

a much richer spectrum of supersymmetric D-branes compared to the flat spacetime. Let

us briefly summarize the results obtained in this paper.

It turned out that the D−-branes and the D+-branes behave very differently when an

electric flux and an angular momentum are turned on. The D−-branes can be placed away

from the origin by introducing a constant electric flux. So this process in general breaks a

global world-volume symmetry except some special case. For a (+,−,m, n) brane, the D-

brane worldvolume theory has the global symmetry SO(m)×SO(n)×SO(4−m)×SO(4−n).

The breaking of the symmetry SO(m) or SO(n) by the electric flux is necessarily correlated

with that of SO(4−m) or SO(4−n) due to the shift of transverse position. One exception is a

(+,−, 3, 1) or (+,−, 3, 1) brane which preserves the maximal supersymmetry as discussed

in 3.1.1. In this case the electric flux and the transverse shift do not touch the global

symmetry SO(3)× SO(3). D+-branes, however, do not break any global symmetry by the

electric flux. But, in this case, the electric flux is not constant but linearly proportional

to Neumann coordinates. Note that the D+-branes can take arbitrary transverse position

without breaking supersymmetry [14]. We also observed that the D−-branes can also

move with constant velocity preserving some amount of supersymmetries. However the

D+-branes cannot move while preserving the supersymmetry.

Since the oblique D-branes contain both D−-like and D+-like supercharges, a similar

feature also appears as the D−-branes. But, only if the electric flux is turned on to preserve

the D+-like supercharge, some OD-branes can then be shifted away from the origin after

further introducing a constant electric flux or move with constant velocity, while preserving

some supersymmetries.

We also considered the magnetic flux background. As observed by Mattik [15], we

showed that the D-brane with magnetic flux is continuously interpolating from a D+-brane
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to a D−-brane, in general, with different amount of supersymmetries at the endpoints. Our

analysis shows that the OD-branes cannot preserve any dynamical supersymmetry in the

magnetic flux background. We observed that there exist supersymmetric moving D-branes

satisfying eq. (5.5). Note that these D-branes already carry the electric flux F+a as well as

the magnetic flux Fjk. These D-branes thus correspond to giant gravitons rotating in the

Xr′ − Xs′ plane with the nontrivial worldvolume gauge field. For example, the D-brane

with Ω = γ35 exp
1

2
Θ12γ12

can preserve 2 dynamical supersymmetries with the nontrivial

F+3,5, F12 and L78 background. Recently this kind of giant graviton was found [50] in the

AdS5 ×S5 geometry. It could be interesting to see whether the giant graviton in [50] after

the Penrose limit can be reduced to that in the plane wave geometry.

In this paper we did not consider intersecting D-branes [51, 52]. It should be straight-

forward to extend the analysis in this paper to the intersecting D-branes following the

scheme in [39].
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A. Matrix relations

Here we list useful matrix relations for the OD-branes with Γ = γ1256 in table 1 which

were used to find supersymmetric backgrounds in the subsection 3.3.

• OD3-brane with Ω = 1
2(γ1 − γ6)(γ2 + γ5):

ΩΠP+ = γ2345P+ or − γ1346P+, (A.1)

ΩΠP− = −γ34P− or − γγ78P−. (A.2)

• OD5-brane with Ω = 1
2(γ1 − γ6)(γ2 − γ5)γ34:

ΩΠP+ = P+, (A.3)

ΩΠP− = γ25P− or γ16P−. (A.4)

• OD5-brane with Ω = 1
2(γ1 − γ6)(γ2 − γ5)γ78:

ΩΠP+ = −γP+, (A.5)

ΩΠP− = γγ25P− or γγ16P−. (A.6)

• OD5-brane with Ω = 1
2(γ1 − γ6)(γ2 + γ5)γ37:

ΩΠP+ = −γ2457P+ or γ1467P+ (A.7)

ΩΠP− = −γ47P− or − γγ38P−. (A.8)
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• OD7-brane with Ω = 1
2(γ1 − γ6)(γ2 + γ5)γ3478:

ΩΠP+ = −γ2578P+ or − γ1678P+ (A.9)

ΩΠP− = γ78P− or γγ34P−. (A.10)
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